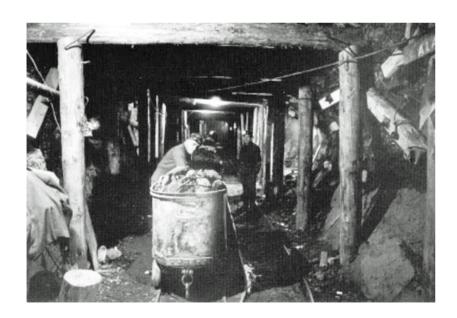
CIVIL-463.17

BITUME ET ENROBES BITUMINEUX

Base: Chapitres 12 et 13

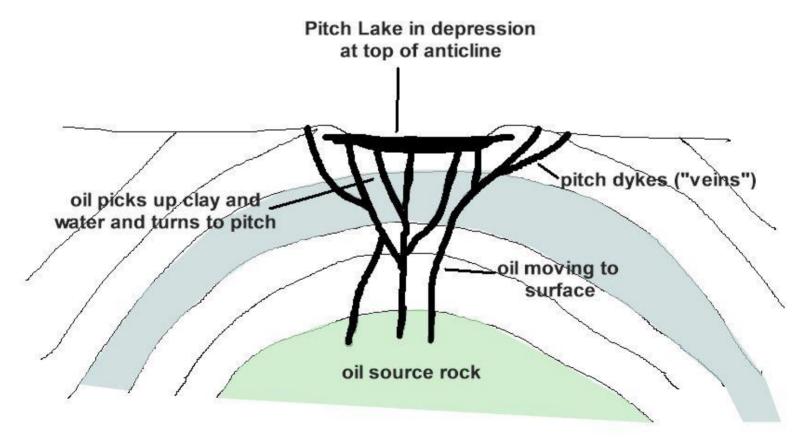

Le bitume

- Mélange d'hydrocarbures naturels ou pyrogénés
- ▶ Forme liquide, semi-solide ou solide
- Matériau thixotrope → viscosité ≡ fct (t)
- Matériau thermoplastique
 - >> Conserve ses propriétés après chauffage
 - >> Consistance variant avec la température
- Matériau adhésif
 - >> Fonction de liant des granulats

Origines du bitume

Asphaltes naturels

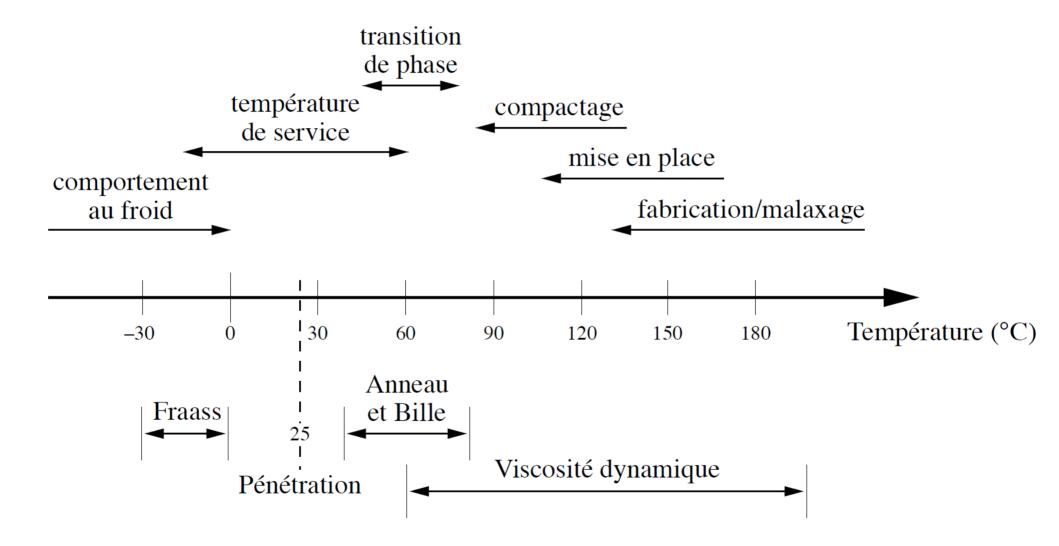
- >> Lac de Trinidad
- >> Val-de-Travers (NE)


Lac d'asphalte de Trinidad

Lac d'asphalte de Trinidad

Diagram through the La Brea area showing where the pitch originates

Gisement naturel – Mer Morte


Origines du bitume

- Bitumes de distillation du pétrole
 - » Raffinage du pétrole brut
 - >> Déchets de la distillation / Raffinerie
- Part essentielle des bitumes utilisés en construction routière

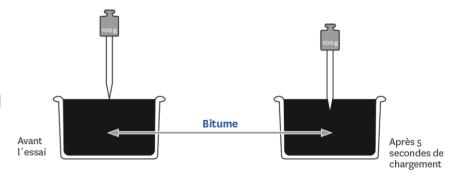
Raffinerie

Essais sur les bitumes

Point de fragilité Fraass

- ► Essai EN 12593
- Comportement au froid
- Fragilité à basse température
- Point de fragilité Fraass
 - »°C
 - >> Température à laquelle se produit la première fissure visible à l'œil nu

Point de fragilité Fraass


Conception et réalisation des voies
de circulation - Automne 2024

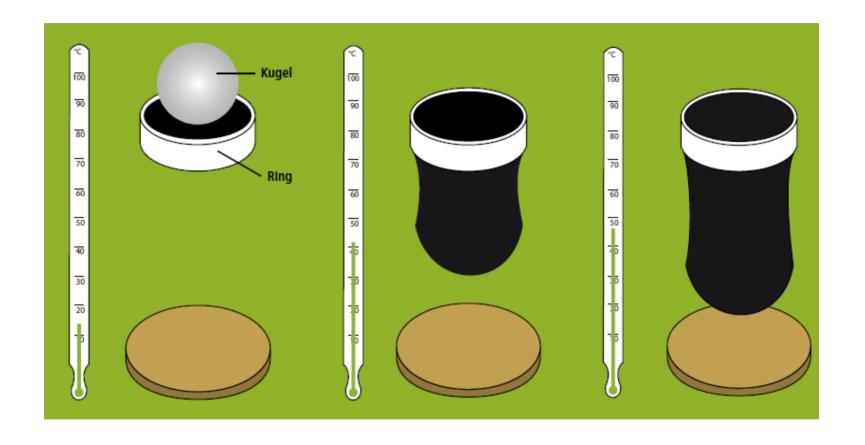
CSDINGENIEURS

INGÉNIEUR PAR NATURE

Essai de pénétrabilité

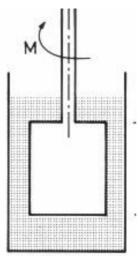
- **▶ Essai EN 1426**
- ▶ Consistance à température ambiante
 - □ Température : 25 °C
 - ☐ Charge de 100 g
- Aiguille lâchée durant 5 secondes
 - ☐ Godet de 80 cm³ de bitume
- Profondeur d'enfoncement de l'aiguille exprimée en 10⁻¹ mm

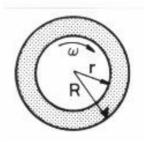
Essai de pénétrabilité



Point de ramollissement Anneau & Bille

- **▶** Essai EN 1427
- ▶ Ramollissement du bitume en phase de transition
 - □ Anneau de bitume situé à 25 mm au-dessus d'une plaque
 - ☐ Bille de 3,5 g
 - ☐ Température au début de l'essai : 5 °C
 - □ Chauffage : 5 °C / min
- ▶ Température (°C) à laquelle la poche que forme le bitume en se déformant touche la plaque réceptrice
- Ring and ball test


Point de ramollissement Anneau & Bille



Viscosité

▶ Température élevée : liquide newtonien

Viscosimètreà cylindresconcentriques

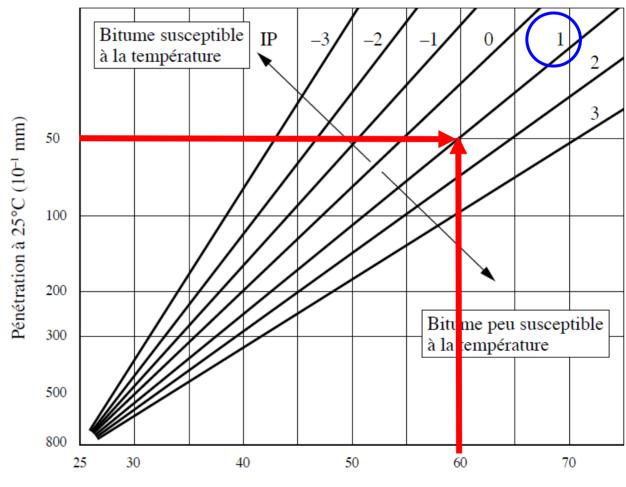
Indice de pénétration

- **IP**
- ▶ Caractérise la susceptibilité thermique des bitumes
 - Modification de la consistance du bitume quand la température se modifie

$$IP = \frac{20(t_{AB} - t_p) - 500(\log 800 - \log P_t)}{(t_{AB} - t_p) + 50(\log 800 - \log P_t)}$$

 t_{AB} température de ramollissement A + B (°C) t_p température à laquelle est effectué l'essai de pénétrabilité (°C) P_t pénétrabilité à la température t_P (10⁻¹ mm)

- >> Eurocode
- ▶ Indice de pénétration Susceptibilité du bitume


Indice de pénétration

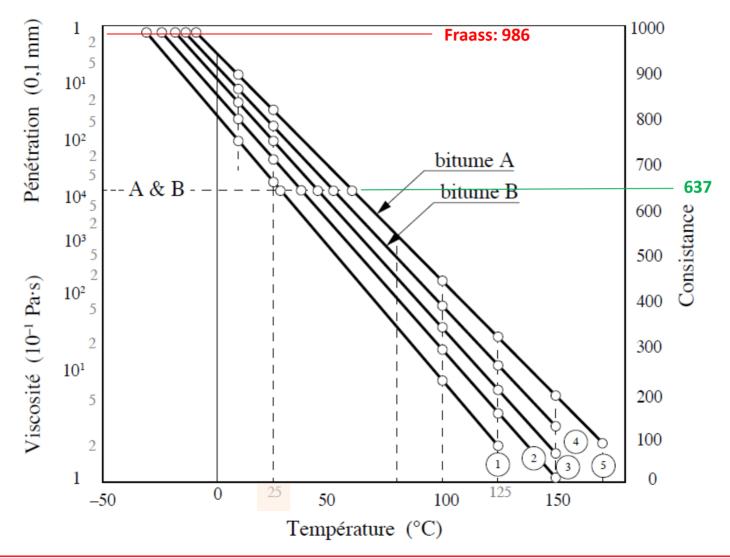
Exemple

$$\rightarrow$$
 $P_t = 50$

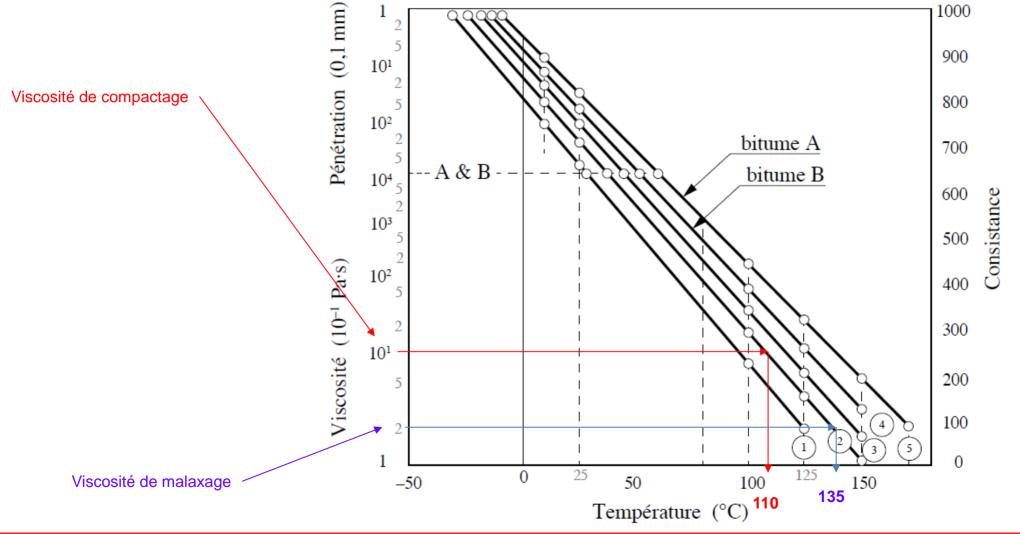
$$\Rightarrow$$
 $t_{A+B} = 60^{\circ}$

$$IP = \frac{20(t_{AB} - t_{p}) - 500(\log_{10} 800 - \log_{10} P_{t})}{(t_{AB} - t_{p}) + 50(\log_{10} 800 - \log_{10} P_{t})}$$

Point de ramolissement A et B (°C)


Courbe de consistance

- Diagramme d'Heukelom
- ▶ Echelle de consistance
 - → Valeurs: 0 à 1000
 - → Point de fragilité Fraass C = 986
 - → Température A + B
 C = 637

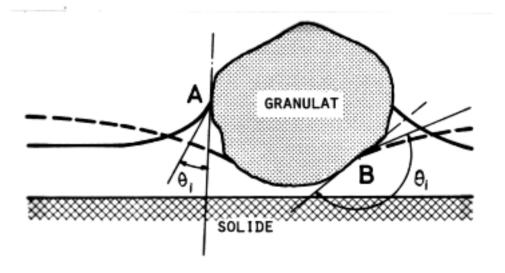

$$\mathbf{C} = 1'000 - 125 \cdot P$$

$$\mathbf{C} = 1'310 \cdot \frac{\log \eta}{4,35 + \log \eta}$$

Diagramme d'Heukelom

Diagramme d'Heukelom

Adhésivité


▶ Mouillage d'un granulat par un liant bitumineux

 \rightarrow A: granulat sec, θ_i petit

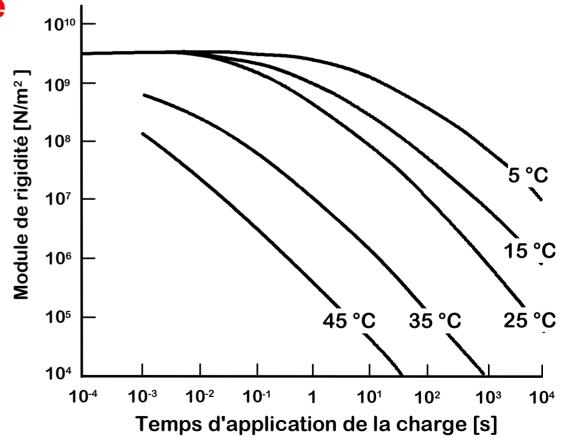
🐨 le granulat résiste à l'action de l'eau

 \triangleright B: granulat humide, θ_i grand

le granulat est facilement désenrobé

Rhéologie du bitume

- Visco-Elasticité
 - >> E = fonction (temps de charge, température)
 - >> Notion d'équivalence temps température
- Module de rigidité E
 - Basse température + dynamique
 - ☐ E = cste (élastique)
 - >> Haute température + statique
 - \Box E = 1/temps

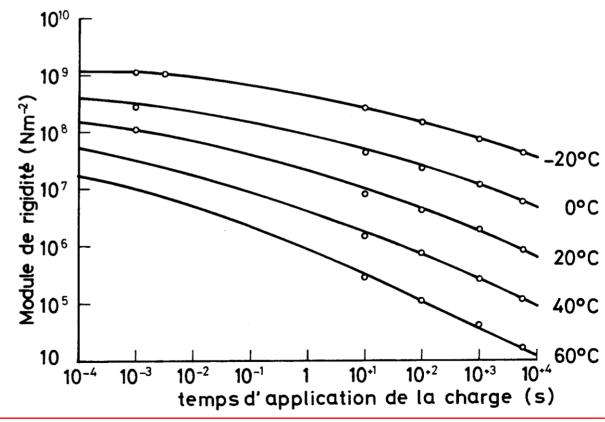

Comportement rhéologique

Variation du module de rigidité

bitume très susceptible

$$\rightarrow$$
 $t_{A+B} = 66 \, ^{\circ}C$

$$\rightarrow$$
 IP = -2,3


Comportement rhéologique

Variation du module de rigidité

b) bitume peu susceptible

$$\rightarrow$$
 $t_{A+B} = 116 °C$

$$\rightarrow$$
 IP = + 5,3

Bitume: normalisation

- ▶ En fonction des valeurs de pénétration à 25 °C
- 9 classes
 - → 250/330 160/220 100/150 70/100 50/70 40/60 35/50 30/45 20/30
 - → B 250 / 330
 - □ très mou / Déformations / bonne adhérence
 - » B 20 / 30
 - □ Dur / température de pose élevée / fissuration

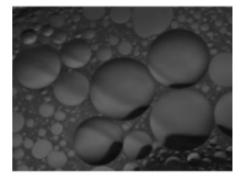
Bitumes normalisés en Suisse

Classe	20/30	30/45	35/50	40/60	50/70	70/100	100/150	160/220	250/330
Pénétrabilité à 25 °C (10 ⁻¹ mm)	20-30	30-45	35-50	40-60	50-70	70-100	100-150	160-220	250-330
Point de ramollisse- ment B + A (°C)	55-63	52-60	50-58	48-56	46-54	43-51	39-47	35-43	30-38
Indice de péné- Min. trabilité IP (-) Max.	-1.5 + 0.7	-1.5 +0.7							
Point de fragilité Fraass (°C)		- 5	- 5	- 7	- 8	- 10	- 12	- 15	- 16
Viscosité dynamique à 60°C (Pa⋅s)	440	260	225	175	145	90	55	30	18
Viscosité cinéma- tique à 135°C (mm²/s)	530	400	370	325	295	230	175	135	100

Émulsions de bitume

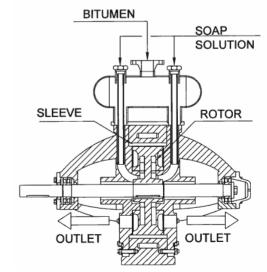
▶ Dispersion de gouttelettes de bitume dans une phase continue aqueuse

50 à 70 % **▶** Bitume


Gouttelettes de 1 à 5 μm

30 à 50 % **▶** Eau

Emulsifiant max 2,5 %


- **▶** Emulsion
 - >> Energie mécanique + stabilisation chimique

Fractionnement du bitume

- ▶ Energie mécanique
 - >> Moulin colloïdal
- **▶** Energie chimique
 - **Emulsifiant**
- ▶ 1 gr de bitume
 - → 10 milliards de gouttes
 - ▶ 1 à 2 m² de surface de contact

Émulsions de bitume

Avantages d'utilisation

- >> Pose à froid (moins de consommation d'énergie)
- >> Utilisation par temps humide
- >> Coûts plus faibles
- ▶ Mélange eau bitume
 - >> Gouttelettes de bitume en suspension dans l'eau
 - >> Eviter la sédimentation + floculage
 - ⇒ Fabrication à 100°C

Epandage de l'émulsion

Émulsions de bitume

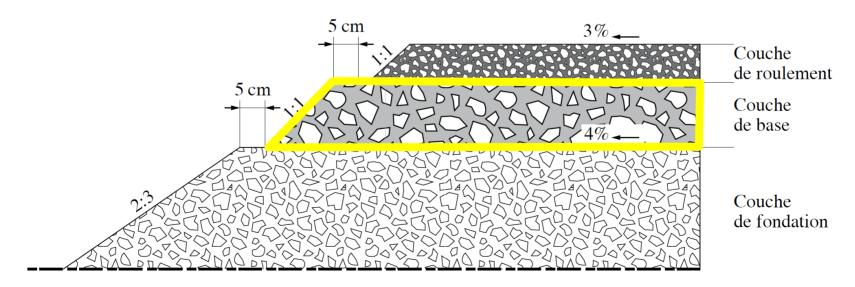
Enrobés bitumineux

- **▶** Différentiation selon ...
 - >> Type de liant
 - >> Courbe granulométrique
 - >> Pourcentage de vides
 - Compacité
 - ☐ Fermé / Semi-ouvert / Ouvert
 - Température de fabrication
 - □ À chaud / Tiède / A froid
 - >> Mode de mise en œuvre

Conception et réalisation des voies

Types d'enrobés

▶ Béton bitumineux	dense Asphalt Concrete	AC
--------------------	------------------------	----

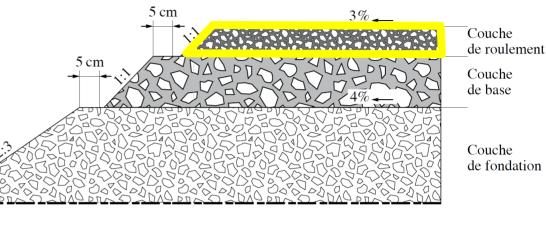

- ▶ Enrobé bitumineux à module élevé **AC ME**
- Macrorugueux AC MR
- Stone Mastic Asphalt **SMA**
- Enrobé semi-dense **SDA**
- PA **▶ Drainant** *Porous Asphalt*
- Asphalte coulé MA
- Enrobé coulé à froid **MBCF**

Béton bitumineux AC T

Couche de base en enrobé bitumineux AC T

- Bonne répartition des charges (dalle)
- Peut servir de couche de roulement provisoire ou pour routes secondaires
- Norme EN 13108-1

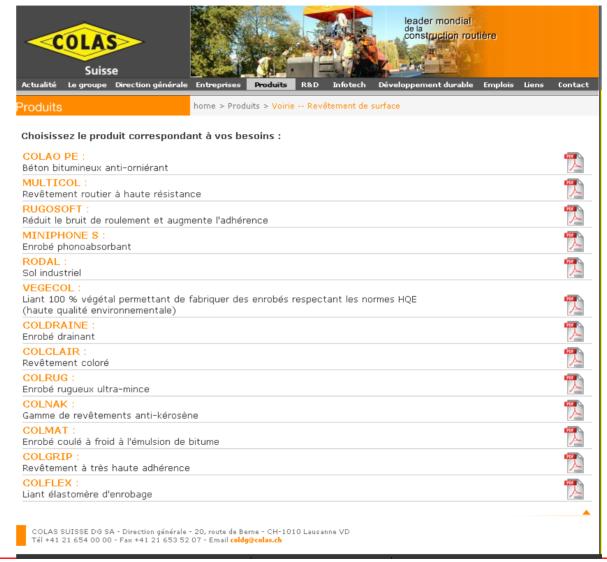
Couche de roulement AC


▶ Asphalt Concrete

→ AB Asphaltbeton

▶ 4 sortes

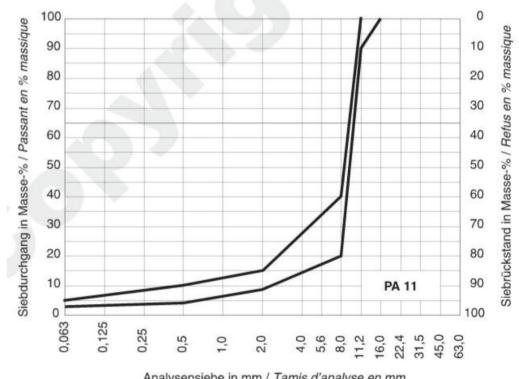
- → AC type d'enrobé
- → 8 diamètre du plus gros grain (mm)


Désignation	Granulats max (mm)	Teneur minimale en liant (%)	Epaisseur de couche (mm)			
AC 4	0/4	7,2	15 20			
AC 8	4/8	5,8 6,2	20 35			
AC 11	8/11	5,4 5,8	35 50			
AC 16	11/16	5,2 5,4	45 70			

Conception et réalisation des voies

Couches de roulement

- Grande variété
- Exemple : COLAS
 - Classique
 - >> Coloré
 - >> Haute adhérence
 - Végétal
 - >> Phonoabsorbant
 - » Etc.



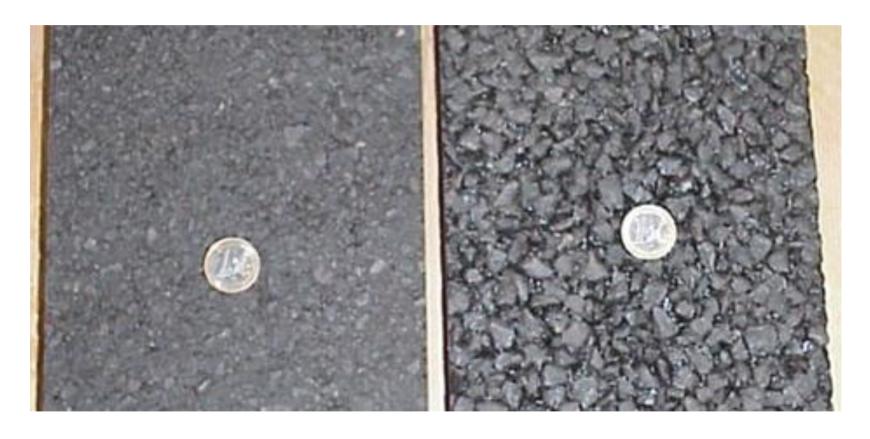
Enrobé drainant PA

Couche de roulement enrobé drainant PA

- **▶** PA Porous Asphalt
 - >> DRA Drainasphalt-Tragschicht
- ▶ Teneur en vides élevée
- **▶** Courbe granulométrique discontinue
- ► SN 640 431-70-NA
- ▶ EN 13108-7:206

Analysensiebe in mm / Tamis d'analyse en mm

Exemples


Propriétés

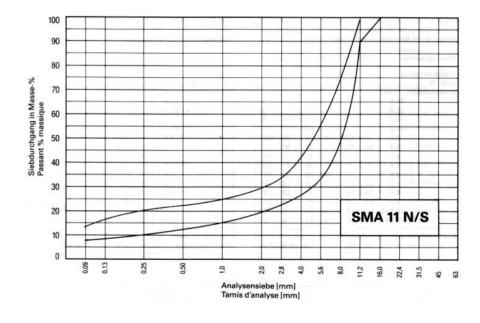
Drainabilité élevée

- >> Danger d'aquaplaning réduit
- **▶** Absence d'eau de surface
- >> Réduction des éclaboussures et des projection d'eau
- Diminution de la réflexion de la lumière des phares sur la chaussée mouillée
- Réduction du bruit de circulation
 - >> Effet d'absorption acoustique de la couche de roulement
 - ☐ gain de 2 à 8 dB(A) Principal avantage

Enrobés macrorugueux AC MR

▶ Différence avec AC

Enrobés macrorugueux AC MR

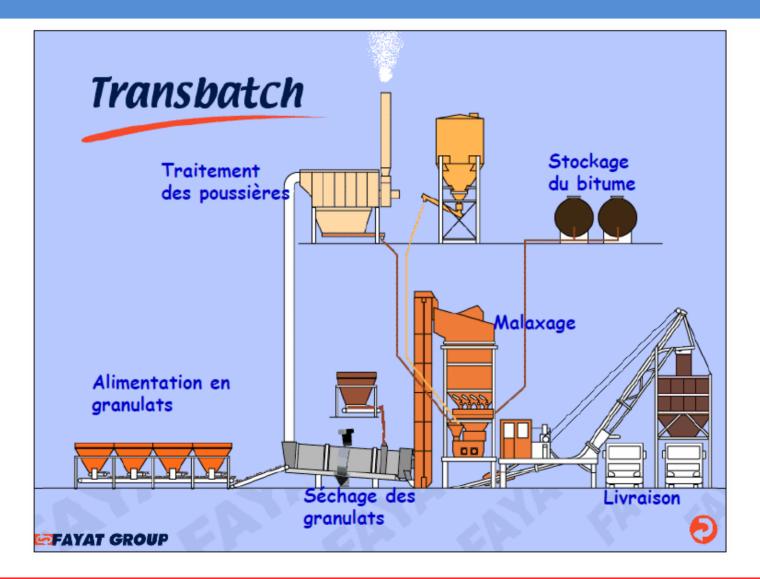

- Vides remplis de mastic
- ▶ Teneur en vides
 - → 4à6 %
- ▶ Utilisation de BmP 5 à 7 %
- ▶ Résistance à la fatigue élevée
- ▶ 2 sortes
 - → AC MR 8 2 à 3 cm
 - **→** AC MR 11 2,5 à 4 cm

Splittmastixasphalt SMA

Splittmastixasphalt SMA

- **▶** Chaussées fortement sollicitées
- ▶ Tenue du matériau par l'effet rigidifiant du mastic
- ▶ Teneur en vides
 - → 3 à 4 %
- ▶ Teneur en bitume
 - → 6,5 à 7 %
- ▶ Teneur en fines élevée
 - >> Importance du pouvoir rigidifiant du filler!

Fuseaux granulométriques


Tableau 13.10 Fuseaux granulométriques pour des enrobés de grains max. 8 mm.

	A	AC 8 AC MR 8		SMA 8		SDA 8		PA 8		
Tamis (mm)	min	max	min	max	min	max	min	max	min	max
11,2	100	_	100	_	100	-	100	-	100	_
8	90	100	90	100	90	100	90	100	90	100
5,6	72	93	_	_	_	_	50	70	_	_
4	58	81	32	42	30	40	15	52	15	35
2	38	61	21	31	20	30	10	35	10	17
1	25	45	_	_	_	_	7	26	_	_
0,5	16	33	13	21	12	20	4	21	4	10
0,063	6	12	6	11	7	12	3	12	3	5
Classes	min	max	min	max	min	max	min	max	min	max
Gravillons > 4.0	42	19	68	58	70	60	85	48	85	65
Sable: 0,063 à 4,0	52	69	26	31	23	28	12	40	12	30
Filler < 0,063	6	12	6	11	7	12	3	12	3	5

Fabrication des enrobés bitumineux

- **▶** Fabrication en centrale
- ▶ Agrégats
 - >> Séchage / Chauffage
- **▶** Bitume
 - → Viscosité < 3·10⁻¹ Pa·s
- **▶** Températures à respecter
 - >> Sortie de la centrale
 - ☐ 160°C bitume mou
 - □ 190 °C bitume dur

Fabrication des enrobés bitumineux

Stockage des granulats

▶ Sous abri

Transport & Pose

▶ Transport

- >> En camions bâchés
- >> Perte maximale de 20°C

Pose

>> Utiliser un finisseur

- >> Exigences pour l'enrobé lors de la pose
 - □ Viscosité 10-10⁻¹ Pa·s
 - □ Température 110 à 140°C
- Ne pas poser d'enrobés si ...
 - □ Conditions hivernales ou pluie

Préparation du support

- Nettoyage du support
 - >> Feuilles, poussières, etc.
- Séchage support
- Réglage des niveaux
- Pontage des fissures
- Rapiéçage
- Liant d'accrochage
 - » Émulsion

Finisseur

Mise en oeuvre

Compactage

- ▶ Rouleau compacteur à pneumatiques
- ▶ Rouleau compacteur à cylindres statiques ou vibrants
- ▶ Rouleau compacteur mixte
- ▶ Rouleau compacteur à oscillations

